

agriculture & rural development

Department: agriculture & rural development **PROVINCE OF KWAZULU-NATAL**

INTRODUCTION

Over the last 26 years no-till has progressed in leaps and bounds amongst the farming community, dispelling Dr JB Mallet's concern, where on retirement; at the end of his lifelong pioneer work on no-till, that without farmer acceptance, his research would get no further than the library. The benefits of no-till in soil conservation and improved aggregate stability, is a force unto itself. With ongoing scientific research and farmer-support, soil acidification and other challenges facing existing no-till farmers today will soon become a thing of the past, documented in history.

Strategies and methodologies developed over the years of the development of conservation agriculture will become guidelines for future generations.

Stand of No-Till Maize at Denleigh Farm, Karkloof

LIME & GYPSUM

Occur naturally. Should not be used Interchangeably.				
	• Material •	CCE(%)		
	Pure calcium carbonate	100		
	Calcitic agricultural limestone	70-100		
	Dolomitic agricultural limestone	70-109		
	 Hydrated lime(slaked agricultural lime 	120-136		
	 Burned lime(unslaked agricultural lime). 	179		

Table1: Calcium carbonate equivalent of some lime (1)

Lime is a carbonate, oxide or hydroxide of calcium	•	Gypsum is a sulphate of calcium
Lime has alkaline properties	•	Gypsum is a neutral salt in water(neither alkaline nor acid)
 Lime raises the pH of soils by neutralizing hydrogen ions 	•	Gypsum will not neutralise acid soils or effectively raise pH
 Lime may be used as a source of Cain low-Ca soils 	•	Gypsum may be used as a source of Ca and S
 Lime won't effectively reclaim sodic soils unless elemental sulphur or sulphuric acid is added 	•	Gypsum reclaims sodic soils by replacing Na with Ca
 Lime may slightly improve water penetration in some soils – improvement decreases as pH rises 	•	Gypsum may improve water penetration when very pure (low salt) water is used for irrigation. Gypsum won't improve the drainage of poorly drained soil. It has no effect

on plough pans, clay pans or

hardpans.

Different Limes and gypsum

Liming by hand on a small scale

SOIL FERTILITY RESEARCH CONSERVATION AGRICULTURE(CA) : NO-TILL

SOIL ACIDITY INTERACTIONS WITH NITROGEN(N) UNDER NO-TILL

Key elements to the investigation conducted by Mr Thibaud over a period of 11 years at Karkloof included: Soil acidification and the efficacy of surface applied lime, N requirement, the effect of N source. **Treatments included:**

N rates (0,60,120,180 kg ha-1), annual surface applied lime (0,0.75,1.5 Mg ha-1), N source (LAN & urea) Results

Soil acidity is problematic in a no-till situation.

Advice

Advice to farmers who are considering converting to CA are advised to resolve existing topsoil and subsoil acidification issues prior to adopting no-till.

NITROGEN RESPONSE OF MAIZE SILAGE FOLLOWING RAIN-FED WINTER COVER CROPS

Silage maize leave little crop residue a challenge to farmers wanting to practice no till. Trial research was conduced by Dr Manson.

Materials & Methods included a trial layout; consisting of 27 main plots (9 treatments and 3 replicates) these plots were split for nitrogen. (Refer to hand out for details)

Results

Vetch as a cover crop, planted alone or with a temperate grass can allow N fertilizer savings of up to 80 kg N/ha. Cover crops provide the necessary mulch suited to no-till

Cover crops with zero cover over control plots taken by drone camera

Vetch, legume strong rooting system.

BENEFITS OF COVER CROPS

- Improves soil fertility
- Soil quality management
- **Erosion control**
- Water management
- Weed, disease and pest management

